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2.17 Equilibrium Versus $teady State in Flow Systems 79
Reactions with larger A H*° values are affected more strongly by temperature
variation. For example, for AH*® = 120 kJ mol~ ', lowering témperature from
30°C to 5°C slows the rate by a factor of 70, whereas for AF® — 60 kJ
mol ™, the same temperature change slows the rate by a factor of about 9.

Example 2.6, Hydration of CO, in Terms of Transition-State Parameters A

reaction of importance in natural waters and biochemistry, the hydration of
COI:

C02 + HQO i HzCOg

is described kinetically by the parametets E, = 63.0, AH*® — 60.5 (kI mol 1,
AS* = 107 TK ' mol™", and log k, = ~3.3 (M~ 57"} at 25°C. The
slowness of this reaction (£, = 3 min at 10°C) is associated with a large
energy barrier as well as a highly negative activation entropy. The free energy
of activation, AG¥, is 92 kJ mol ™", giving K* ~ 10716 M, and indicating
that the quasi-equilibrium concentration of the activaied complex, [HZO, CO,F,
for a 107° M CO, solution would be ~ 107° M! For the corrésponding
dehydration reaction, H,CO; — CO, + H,0, experimental values of the uni-
molecular rate constant vary from about 3 to 30 s~ over the temperature range
5-30°C. Tnterpretation of these data in terms of ACT vields AH*® — §1.5 kJ
mol ' and AST® = —15 ¥ K~ mol™! for dehydration of H,CO;, consistent
with AH® = —1and AS® = 92 for the reversible overall reaction, and with
an equilibrium constant, K = kyiky, equal to the ratio of the hydration and
dehydration rate constants, a consequence of the principle of detailed balancing
(microscopic reversibility) (Moore and Pearson, 198 1).

117. EQUILIBRIUM VERSUS STEADY STATE
IN FLOW SYSTEMS

Open Flow Systems Versus Closed Systems

Most_ Datural water systems are continuous, open systems. Flows of matter and

<

- energy occur in the real system. The time-invariani state of a continuous system

9 Fe*(aq) + H,0, —
10 Fe** + FeOH?" —

11 Fe?t + Cr*" -

M-1 g1, except for reaction. 14, unimolecular, 570

12 FeOH?* + Cr?* —

13 Co(NH,),CP* + Fe®* —
Dissociation:

14 H,CO, = CO; + H0
25°C, except as noted,

with flows at the boundaries is the steady state.” This state_may be poorly
approximated by the equilibrium state of a closed system. In Figure 2.2 we
indicated the important features of an open-system model with material fluxes
and chemical reactions. The simple reversible reaction (a *‘model”’ reactiony,

A=—=R8B
ko
The term steady state as vsed in this example means the time-invariant state of 2 flow sysiem
wilh chemicaf reactions. Steady state, with respect to chemical mechanisms, means that certain

intermediates in a complex reaction are of low conceatration, so that 4C/dr = 0. Tt is important
lo keep these usages of ““steady state’ distinct.
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was introduced to illustrate elementary differences hetween closed- and op: T:
system models. Solution for the steady-state concentration values of A and
gives the results 0
. I‘-C‘A_() + kb(E-Ail) + —C_‘B,(})
= (1t T
kf + kb + ¥
_ - _ 10§
_ rCB,Q + kf(C,\,n + CB'O) 4 2
g = (n 5
kf + kb +r
10
in which r = O/V, the fluid fiow 1ate constant (time™ "), and overbars den §
inflowing concentrations. 10
We examine the ratio of Cy and C, and compare it with the ratio exped 10
for chemical equilibrium. The ratio of Cp/C, for the steady state is, dividi —
ﬂ((

equation 139 by equation 138,
CB o rEB,D + kf(EA,O + EB,O)

CA TEA’() — kb(EA,U + E‘B,O)

(i J‘
-eactions indicat

Equation (140) shows that Cp/C,, will tend toward ke/k, as the materiat :‘faactlons have 7

io the system becomes small, that is, as rTZB,O and rC, ¢ vanish. For r =nréezofanumbe
the system becomes a closed system, and Co/Ca = kilky = K, the equﬂibri::acti:m?n’ 1}9‘
constant. The quantity # = O/V is the reciprocal of the fluid residence timk Forns 1(1)r W J
of the well-mixed system: r = 77", As 7g tends to very large values, the stes . o tgcl:ati?’ngr
ctate concentrations of the system approach the equilibriom values. ¥ Tocal o uilib;'-j
A simple result is obtained when only A enters the system. Then, Coijpion c§1 ditiod

0 and equation 140 reduces to specics and phas

snvironments. In

G _ kG  _ K (thetically active:
Cn 1Cao+hkCap Ttk siologically actiy

. . . - - otal system equi
The steady-state concentration ratio quotient depends on the chemical rates

stants and the flux rate constant. For r < &y, Cp/Cp = kfky = K ifre
then Cp/Cy = k/r. In terms of the residence time, Tg, and the half-time d§UGGESTED |
backward reaction, 7, the steady-state ratio approximates the equilibrium -
if TR & Tp- Atking, P. W. (1!
_ Bemner, R. A. (19
Example 2.7. Steady-State Composition of an Open Completely Mixedly. .
tem with the Reaction A == B as « Function of Residence Time Assumcbenbi b K G
Cao=0, k= 1075 s, and ky = 1078 571, so that K = 10. The resi Chg o
time, g, is varied over the range from 10° to 10 5. Table 2.10 shows bridig?; Y
calculated ratio of steady-state Cp/Ca to K for a 1000-fold variation ingye.; }-' T
residence time relative to the characteristic reaction time (~k; D). Pro’p e&ie <
The equilibrium assumption is justified for many reactions with shorlt  ppygioige
and long 7. Rate data for a large namber of first- and second-order agé  DC.
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Table 2.10. Composition® of a Completety Mixed
kr
Open System at Steady State for A == B

ki

GolCy,
7z (8) rs™Y ik, K
10° 1073 10 0.00
2 x 10° 5 x 107 5 0.17
5 x 10° 2 x 107° 2 0.33
i 10 1x10°° I 0.50
2 x 108 5% 1077 0.5 0.67
5 x 108 2 x 1077 0.2 0.83
Ny 1 x 1077 0.1 0.91
108 1 x 1078 0.01 0.99 :

YCR/ CAK versus 7z, ke =1 % 107 %5 1k, = 1 X 10757\,

reactions indicate 7., less than seconds to minutes, and many other aqueous
reactions have T, less than hours to days (Hoffrmann, 1981). The residence
fimes of a number of freshwater systems are greater than these ranges (Imboden
and Lerman, 1979). Critical attention needs to be directed to slow chemical
reactions for which 7., = 7.

For many systemns it is known that there exist regions or environments in
which the time-invariant condition closely approaches equilibrium. The concept
of local equilibrium is important in examining complex systems, Local equi-
libriom conditions are expected fo develop, for example, for kinetically rapid
species and phases at sediment-water interfaces in fresh, estuaring, and marine
environments, In contrast, other local environments, such as the photosyn-
thetically active surface regions of neasly all lakes and ocean waters and the
biologically active regions of soil-water systems, are clearly far removed from
fotal system equilibrium.
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